4/PHY-251 Syllabus-2023

2025

(May-June)

FYUP: 4th Semester Examination

PHYSICS

(Classical Mechanics—I and Special Theory of Relativity)

(PHY-251)

Marks: 75

Time: 3 hours

The figures in the margin indicate full marks for the questions

Answer any ten questions

- What are constraints? Give its classification.
 Explain holonomic and non-holonomic constraints with examples. 1+1½+2½+2½=7½
- 2. What are generalized coordinates? Give examples. Obtain the expression for generalized displacement, generalized velocity and generalized acceleration.

11/4+2+2+2=71/4

	(b) Si	tate d'Alembert's principle. Using this rinciple, derive the Lagrange's quation of a system moving under the	1½ 8. 5=6	(a) (b)	Using Hamilton's canonical equations, obtain the equation of motion of a harmonic oscillator. 6 What are cyclic coordinates? 1½	
·	fo L: (b) O of	That are the limitations of Newtonian formulation? How are they overcome in agrangian formulation? Obtain the Lagrangian and the equation of a simple pendulum scillating in the vertical plane.	9. 3 4½	(a)	What are inertial and non-inertial frames of reference? Give one example each. 2 Write down the Galilean transformation equations and show that Newton's second law is invariant under Galilean transformation. 1½+4=5½	
1	linear	and prove the law of conservation of momentum for a system of particles generalized coordinates. 1½+6=		(a)	State and explain the basic postulates of the special theory of relativity. $2+1\frac{1}{2}=3\frac{1}{2}$	
·	p (b) S H	What is Hamiltonian? Explain its hysical significance. 1+1½= show that for a conservative system the Hamiltonian is equal to the total energy		(b)	Explain why no-fringe shift was observed in Michelson-Morley experiment. What is the implication of the null result? 2+2=4	
((c) W	f the system. What are the advantages of Hamiltonian ormulation over Lagrangian ormulation?	3 11. 2	(a) (b)	Starting from Lorentz transformation equation, obtain the expression for length contraction and time dilation. $2+2=4$ The half-life of pion at rest is $1\cdot 8\times 10^{-8}$ seconds. What will be its half-life if it is	
I	State Hamili and p	Hamilton's principle. Establish ton's canonical equations in Cartesian olar coordinates. 1+3+3½=	7½		seconds. What will be its nair-life if it is moving with a speed $V = 2 \times 10^7$ m/sec relative to the observer? 3½	
D25/ 1360 (Continue		(Continue	ed) D25	5 /136	(Turn Over)	

12.	<u>(</u> a)	Calculate the length of the rod in a frame of reference moving with a speed of 0.6c. The proper length of the rod is 5 m.	3		
	(b)	variation of the mass of the object with	1/2		
13.	Establish Einstein's mass-energy relation. Discuss the importance of this relation with examples. $5+2\frac{1}{2}=7\frac{1}{2}$				
14.	(a)	Show that the rest mass energy of an electron is 0.511 MeV.	3		
	(b)	550 nm was detected by a stationary galaxy A. How fast and in what direction (relative to galaxy A) should galaxy B be moving in order to observe the same line	11/2		
15.	(a)	What do you understand by rest mass? Show that the rest mass of a photon is zero.	=4		
	(b)		31/2		
16.	W	nat are position four-vector, velocity			

down the components of these vectors.

four-vector, momentum four-vector? Write